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Component mode synthesis was used to analyze three
different types of structures with MSC NASTRAN.
The theory and technique of using Multipoint Con-
straint Equations (MPCs) to connect substructures
to each other or to a common foundation is pres-
ented. Computation of the dynamic response of the
system from shock spectrum inputs was automated
using the DMAP programming language of the MSC
NASTRAN finite element code.

INTRODUCTION

Computation time in dynamic analyses increases with either the square
or cube of the number of degrees-of-freedom. As a result, there can be substan-
tial savings in computer costs by using dynamic substructing methods in large
dynamic problems. In some cases, finite element models become so large that
only a few supercomputers can be used to solve the resulting dynamics problem.
In these cases, dynamic substructing may be required.

Component mode synthesis methods, like those introduced in 1971 by
MacNeal [1], are often used in dynamic substructuring. These techniques have
been applied to superelement analyses in MSC NASTRAN. Most classes of problems
can be solved with this procedure. However, response spectrum analysis problems
using model synthesis methods have not been previously analyzed [2,3] with MSC
NASTRAN. In this effort, both basic response spectrum methods and U.S. Navy
DDAM shock analysis methods that require an evaluation of modal masses in the
specification of the shock spectrum input are analyzed. In this paper, the
theoretical background for the application of modal synthesis to shock spectrum
problems and a numerical evaluation of the methods are presented.

THEORY
Three cases are considered in the theoretical development:

Case I: Single substructure attached to a residual struc-
ture (foundation).
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Case II: A series of substructures attached to a residual
structure (foundation).

Case III: Parallel substructures connected to each other and
to a common residual structure (foundation).

Using these three cases, any |inear structure can be divided into a

number of substructures, analyzed, and combined using multipoint constraint
(MPC) equations.

In all cases the eigenvalue analysis of the substructures to find mode
shapes {¢;} and frequencies {w;} is to be determined assuming a free-free sub-
structure.

The equation of motion of a linear system can be written as:

M}{U} + [KI{U} = {f(t)} (1)

Expanding the displacement in terms of the free-free mode shapes:

{vle)}={g}e () @

J

Substituting into Equation (1):

= {4 gz {s)g={r(s]) ©
Premultiply by {¢a}Tf
(s M= {) g (o) Z{s}g={s){Fl} @

(o) [u] {4} =msi,
{¢i}T[K]{¢j}" i%i;

and fi(t) = (i} F(v)} (6)

(5)

!
X

where:
m; is the generalized mass of the ith mode

K; is the generalized stiffness of the ith mode
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f; is the generalized force for the ith mode

and

Loie
Gij={0, :;ej] ™

Using these definitions, the equation of motion in generalized coordinates
becomes:

mi&i + Ki&i = f; (8)
for each mode, i.

Case I: Single Substructure

Assume that the connection points shown in Figure 1 represent four
degrees-of-freedom designated 997, 998, 999, and 1000.
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Figure 1. Case I: Substructure and Residual or Foundation
Structure

Furthermore, it is assumed that 16 modes can be used to represent the substruc-
ture. Generalized stiffness, K;, and generalized mass, m;, are connected to
each scalar mass point. The displacement of the scalar point is the modal dis-
placement, £;. The MPC cards which relate the connection degrees-of-freedom
(997-1000) to the 16 modal displacements, £;, can be written as:
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In defining the constraint equations above, it was discovered that
fewer modes were required for an accurate solution if only translational degrees
are included in the constraint equations at the connection points. After a
response spectrum analysis has been run on the reduced structure connected to
the residual structure by multipoint constraint, Equation (9), it is simple to
recover the internal component substructures’ displacement. For substructure I
shown schematically in Figure 1 with 1000 displacement degrees-of-freedom, the
internal displacements for the jth mode of the reduced dynamic model are given
in terms of the 16 scalar point (generalized) displacements.

1 16 1

{ Y; } = > { ¢ }1 * 6 s ¥.[.é.]16 { §; } (10)

1000 1 =1 1000 1000 16

Once the displacements are known, stress, forces, etc., are easily determined in
NASTRAN using the element stiffnesses matrices. All that remains is to sum the
desired quantities over the modes with either the NRL sum (Navy DDAM) or SRSS
sum (Earthquake Spectrum Analysis). Thus, the steps needed to use the component
mode synthesis method are as follows:

(1) Determine the free-free mode shapes, ¢;, generalized
mass, m;, and generalized stiffness, K;, for the sub-
structure.

(2) Choose a sufficient number of modes of the substructure
to cover the frequency range of interest.

(3) Model the residual structure (foundation) and scalar
points for each mode using grounded generalized masses
and stiffnesses.

(4) Connect the component mode representation of the sub-
structure to the residual structure with multipoint
constraint equations (MPCs) as defined in Equation (9).

(5) Determine the modal mass of the combined structure to
ensure that a sufficient percentage of the total mass is
included in the model. If the total mass is less than
required, the number of modes in the substructure must
be increased.

(6) If the modal mass requirement is satisfied, determine
the dynamic stresses on the residual structure and
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recover the stresses in the component substructures with
Equation (10).

Case II: Series of Substructures

For this case the method is almost identical with Case I. The free-
free modes of vibration must be determined for each substructure. The residual
structure is then modeled; each substructure is modeled with scalar points,
generalized stiffnesses, and generalized masses for the modes to be considered.
MPC cards, as defined previously in Equation (9), relate the connection points
of the residual structure to the first substructure. Each substructure is rela-
ted to the next substructure through a different set of MPC cards based on com-
patibility of the deflections of the physical connection points between the
substructures. This will be shown in detail below. In defining these new MPCs
that connect substructures, the dependent degree of freedom relating substruc-
ture, S;, to substructure, S;,;, must be selected from S;,; (see Figure 2).
Otherwise, a mode is lost in the resulting combined structure.

As an example of this method, assume that each substructure, S;, in
Figure 2 can be represented by four modes. Mode shapes for the first substruc-
ture, S1, are designated {¢;} and for the second substructure, So, the modes are

designated {§;}, etc.

Sn
n01-n03 | I I €&—— Connection Points, n
| | |
S2
N
201-203 e o o &— — C(Connection Points, 2
] | |
51
I I |
101-103 e e o &——— C(Connection Points, 1
| I I
R &——— Residual Structure (Foundation)
T
Input

Figure 2. Case II: Series of Substructure Sj to §,
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Thus, the MPCs connecting S1 to R are similar to Equation (9):

101 101 101 104

U = ¢1 €1 + ¢2 62 ...t ¢4 64

; : : ; (11)
103 103 103 104

UM% = 1% v 0%, ¢ v g%,

The equations that relate substructure, Sy, to substructure Sp, are developed as
follows in the absence of physical points, U, in the reduced dynamics model.

Recovery of internal displacements, U, in substructure Sy is given by
Equation (10). Writing explicitly for the connection points 201-203 only for
any mode:

201 201 201
U= Gty 4y
: 12)
203 203 203 (
T AT A

But, displacements for 201-204 can also be recovered from the mode shapes and
generalized displacements for substructure Sp, ¢;, and £;, respectively. Equa-
tions similar to (12) can be written for Upgy through Usgs in terms of substruc-
ture Sp, that is in terms of ¢; and £;. Compatibility of displacement gives us
the required MPC equation. That is:

201 - 20!
. . (13)
U203 - 0203
or in terms of the mode shapes and generalized displacements:
201 201 201 201
¢1 §1 o+ Py §4 = 51 El + ...+ 54 E4
. . : : (14)

203 203 203 203
¢1 El + ... ¥ ¢4 §4 = al 21 + ..+ 54 Z4

Note again, in order to obtain all modes the dependent MPC point should be one
of the eigenvector components of the second substructure’s mode shapes, §.

Case III: Substructures Connected in Parallel and to Each Other

This case is illustrated in Figure 3. Substructure Si could be connec-
ted to substructure Sp by a shaft or some type of spring element for example.
Assume that_the free-free mode shapes of Si broken at point 21 are {¢} and those
of Sp are {¢}. If an MPC card |ike that defined in Equation (14) is written to
tie the two substructures together at point 21, one point must be dependent.
Using this procedure, a mode is lost in the eigenvalue analysis of the combined
structure. In order to avoid this deficiency, an extra scalar point can be used
that has a displacement of O. Practically, the point must be held to ground
with a spring at least two orders of magnitude larger than other portions of the
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structure (to ensure a ‘O’ deflection value). MPC equations can be written with
respect to this extra point. This scalar point is the dependent point.

R N AR i T o SN (15)

AN
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Figure 3. Case III: Substructures Connect to Each Other
and to a Residual Structure, R

Since the stiffness of the extra scalar point A is high, Uy © 0, and

Z #l¢, = Z e, (16)

Thus, this approach results in approximately the correct MPC relationship
defined in Equation (14) and retains all modes designated in the substructure.
DISCUSSION OF RESULTS
In order to test the theory developed for Cases I, II, and III, a ser-
ies of test problems has been developed. In this section the models and results

are described.

Case I: Single Substructure Attached to a Foundation

The basic theory was tested on the model described below and shown in
Figure 4.
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Figure 4. Case I: Basic Model of Single Substructure
Attached to a Foundation

A beam stiffened flat plate and three directional cantilevered beam
with a concentrated mass at the end were supported on three directional transla-
tional springs supported at each of 10 locations. The support locations are on
the girders which are fixed at both ends. First, a response spectrum analysis
was run on the complete problem with an arbitrary shock response spectrum pro-

viding a uniform base motion. Next, the structure was divided. The stiffened
fiat plate and cantilevered beam became the substructure while the springs and
girders became the residual structure. An eigenvalue analysis was then per-
formed on the unsupported substructure. Free-free modes, generalized masses,

and stiffnesses were determined for 50 plate modes out of a possible 400 in one
case and 25 plate modes out of a possible 400 in a second case. These, in turn,
were used to represent the component substructure. The appropriate scalar
points (generalized coordinates), generalized masses (concentrated mass cards),
and generalized stiffnesses (spring cards) were built into the NASTRAN model of
the residual structure. The connection to the residual structure which con-
sisted of multipoint constraint equations were incorporated into the NASTRAN
model via MPC cards. Programs have been written to automate the inclusion of
the component modes representation of the substructure into the residual

structure.

Next, an eigenvalue analysis of the reduced structure (see Figure 5)
was performed.
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Figure 6. Case I: Reduced Dynamics Model of Single
Substructure/Foundation

The eigenvalue quantities for the complete model and the reduced compo-
nent mode representations are shown in Tables 1, 2, and 3, respectively.

The final step is to recover the displacements, forces, and stresses
internal to the substructure. This calculation has not been possible to date in
MSC NASTRAN for response spectrum analysis and was accomplished by using Equa-
tion 10. In response spectrum analysis, inputs are specified on a mode-by-mode
basis. For U.S. Navy DDAM analysis, the total stress is determined from the NRL
sum of the modal stresses. NRL contour plots for maximum principle stress due
to vertical uniform base acceleration for the plate substructure for both the
complete model and CMS models are shown in Figure 6.

r‘-m"‘\ 1
|

1.46E°85 LEVELS: 1B DELTA: 2.3PE-04 3.61E-08

Figure 6. Case I: NRL Contours of Maximum Principal Stress for Complete
Model, CMS Model (50 Modes) and CMS Model (25 Modes)
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Table 1.

MODAL EFFECTIVE MASS TABLE

FREQ{HZ)

. 832
1135
464
358
370
804
7?55
oz2
. 853
13. 837
14. 035
17. 952

CACAWN =0

Case I:

FREG(HZ)

. 833
116
. 469
360
376
813
. 960
. 061
7a2
13. 859
14. 051
18. 035

VOCWUN =0

Case I:

MODAL EFFECTIVE MASS TABLE

FREQ{(HZ)

0. 839
1.128
1.478
2. 365
3. 382
5. 823
7. 0095
?. 531
10. 352
14, 269
14, 386
18, 481

Case I:

MODAL WEIGHT

POUNDS

50402. 78
2629. 47
31946. 30
470. 23
1038. 63
106. 24
0. 14

0. 36

2681. 8

1

0. 00
0. 00
18062. 16
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38. 79
2.02
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CUMULATIVE WEIGHT

POUNDS

50402. 78
53032. 25
84978. 55
85448. 78

86487 4
86593, 6

8&6373. 78
B6594. 14
89275. 95
89275. 95
B9275. 95
107338. 12

%

38.79
40. 81
65. 40
65. 76
&6. 56
66. 64
bb. &4
66. 64
68. 71
6&8. 71
68. 71
82. 61

Complete Model Eigenvalue Analysis Results

PARTIC.

1. 14E+01
2. 61E+00
-9. 09E+Q0
-1. 10E+00
—-1. 64E+Q0
5. 24E-01
~-1. 8BE-02
-3. 06E~-02
~-2. 43E+00
5. 01E-13
-3. 36E-04
6. 84E+Q0

CMS Model Eigenvalue Analysis Results (60 Modes)

MODAL WEIGHT

POUNDS

50179. 50
2b666. 01
32074. 36
484. 04
1048. 68
106. 81

CMS Model Eigenvalue Analysis Results (25
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MODAL WEIGHT

POUNDS

50573.
2334.
31913
486.
1051.
103.
0.
0.
2831.
o)
0
24091

37
33
i3
54
&3
41
06
25
S3é
00
00
79

A
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n
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00
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00
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00
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CUMULATIVE WEIGHT

POUNDS

2017%2. 50
52845. 51
84919. 88
85403. 91
846452. 59
86559. 41
86559. 93
846559, B8
89291. 74
89291. 74
892%91. 74
108258. 42

.62
. &7
.35
.73
.53
.62
. 628
. 62

-
[

.72
.72
.32

CUMULATIVE WEIGHT

POUNDS

50573
52907.
84820.
83307.
86358
86462.
86462,
84462
89294.
B87294.
89294,
113386.

37
70
83
37
99
40
45
70

27

27
27
06

%

38

40

&S,
&35.
b6.
66,
&6,
bé.
&8.
&8.
&8.
87.

72
7
2_

&5
46
54
54
54
72
72
72

26

PAR

1.
2.
-9.
~1.
1.
5.
~1.
-3.
-2.
-9.
-1.
7.

TIC.

14E+01
G3E+Q0
11E+0Q0
12E+00
65E+00
26E~01
82E-~-0=2
01E-02
b6E+00
O6E-09
O0E~05
O01E+00

Modes)

PARTIC

-1.

2.
-9.
-1.
-1.
-9.

1.
~2.
-2.

-2.

-1.
~7.

14E+01
46E+00
OFPE+00
12E+00
65E+00
17E-01
19E-02
S4E-02
71E+00
83E-03
?1E-08
FOE+00



The stresses and stress distribution show excellent agreement when 50
plate modes (up to 90 Hz) are used. Some accuracy is lost when only 25 modes
(up to 30 Hz) are chosen, but the pattern is still similar, and peaks are in the
same locations. It is, therefore, necessary to choose enough modes to ensure

inclusion of the important ones.

Case II: A Series of Substructures Attached to a Residual Structure
(Foundation)

Case I covered the methodology involved in connecting a substructure
(generalized coordinates) to the residual (physical coordinates). Case II
demonstrates the situation where two substructures are connected directly to
each other. The technique, in the absence of physical points, is described in
the section on theoretical development. The test problem for this case consists
of a simple beam with one degree of freedom per grid point in the lateral

direction (see Figure 7).
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k1 k2 k11
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b 21 MPC CARDS **

ky k2 k11
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R * See Equation (9)
** See Equation (14)
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Figure 7. Case I1: Basic Model of a Series of Substructures
Connected to Each Other and to a Residual Structure

In this case, all 30 modes were considered in the complete model and
all 11 modes in each substructure were retained in their component modes’ repre-
sentation. All output results, both in the eigenvalue analysis and internal
displacements recovered in the substructures, agreed to nine significant fig-

ures.
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Case III: Parallel Substructures Connected to Each Other and to a
Common Residual Structure

The sample problem for this case is similar to that considered in Case
I except that two identical spring supported plate structures are connected to
each other with very stiff springs and supported on extended common girders. A
plot of the model is shown in Figure 8.

Figure 8. Case II: Model of Parallel Substructures Connected
to Each Other and to a Common Foundation

The shock response spectrum analysis was again run for the complete
mode! and free-free component modes were determined for the two substructures.
The CMS analysis is similar to that of Case I with the extra constraint equation
between substructures as in Case II, with the additional modeling technique
described in the theoretical development of Case III. A new scalar point was
defined and connected to a very stiff spring and used as the dependent degree of
freedom in the constraint equations relating the two substructures. This
allowed all other terms in the constraint equation to be independent which, for
unknown reasons, was required in MSC NASTRAN for good agreement with the com-
plete model (exact case). Eigenvalue results for both cases are shown in Tables
4 and 5. Stress contours are shown in Figure 9. Fifty modes were considered of
a possible 400 in each plate. The agreement, again, is excellent.
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Table 4.

Case III
Results

Complete Mode! Eigenvalue Analysis

MODAL EFFECTIVE MASS TABLE

FREQ(HZ)

G.

842

0. 902

VANNPEUADWL N

. 275
. 409
. 985
. 985

603
176
o2-1-3
993
728
815
221
223
0735

-683

271
391

. 232
. 625
. 756
. 836
. 176
. &90
. 828

Table 5.
MODAL EFFECTIVE MASS TABLE

FREQ(HZ)

0.

844

0. 209

VRNFCIAALWUNNN -

. 279
. 424
. 030

161
650
378
611
234
830
836
230
242
100

. 974
. 465
. 303
. 785
. 849
. 355
. 933
. 096
. 148
. 808

MODAL WEIGHT CUMULATIVE WEIGHT
POUNDS % POUNDS % PARTIC.
6528. 56 2.57 6528. 56 2.57 -4, 11E+00
0. 00 0. 00 6528. 56 2.57 3. 75E-08
44744, 48 17. 65 51273. 04 20. 22 1. 08E+01
0. 00 0. 00 51273. 04 20. 22 2. 78E-08
50777. 22 20.03 102050 27 40. 25 1. 15E+01
0. 00 0.00  102050.27 40. 25 4. 94E-06
42138, 27 16.62 144188, 53 S&. 86 1. 04E+01
0. 00 0.00 144188 53 S6. 86 ~1. 74E-09
2623, B1 1.03 146812 34 57. 90 2. 61E+00
0. 00 0.00 146812 34 57. 90 -1. 11E-08
0. 00 0.00 146812 34 57.90 - 2. 07E-09
4647. 64 1.83 151459 98 59. 73 3. 47E+00
478. 06 0.19  151938.05 59. 92 1. 11E+00
0. 00 0.00 151938. 05 59. 92 S. 47E-09
2392. 79 0.94  154330. 84 60. 86 2. 49E+00
0. 00 0.00  154330.84 40. 86 2. 85€-10
0. 00 0.00  154330.84 60. 86 -5. S3E-10
2050. 21 0.81  156381. 05 61. 67 2. 30E+00
0. 00 0.00  156381.05 61. &7 2. 34E-12
0.30 0.00 156381. 36 61. 67 2. 81E-02
0. 00 0.00 156381.36 61. &7 ~1. 02E-11
0. 00 0.00 156381. 36 61. &7 1. 15E-03
0. 00 0.00 156381. 36 b1. 87 3. 48E-12
197.13 0.08 156578 50 &1.75 -7. 14E-01
3. 84 0.00 156582. 34 61.75 9. 97E-02
Case III: CMS Mode! Eigenvalue Analysis Results
MODAL WEIGHT CUMULATIVE WEIGHT
POUNDS % POUNDS % PARTIC.
6692, 56 2. 64 6692, 56 2. 64 4, 16E+00
1.06 0. 00 6693, 62 2. 64 5. 25£~02
435332. 21 17. 17 502246. 53 19. 81 —-1. OLE+0O1
0. 02 0. 00 S0226. 55 19. 81 7. 57E~03
44787. 91 17. 66 95014, 47 a7. 47 1. 0BE+01
18. 66 0. 01 95033. 13 37. 48 2. 20E-01
49267. 34 19.43  144300. 47 S6. 91 1. 13E+01
24. 65 0.01 144325 13 56. 92 -2, 53E-01
1694. 85 0.67 146019.98 57. 59 2. 09E+00
3.33 0.00  146023. 31 57. 59 -9. 286-02
3100. 32 1.22 149123 64 s8. 81 -2. 83E+00
1483. 05 0.58  130606. 69 59. 40 1. 96E+00
549, 92 0.22 151156 61 59. 61 -1. 19E+00
17.05 0.01  151173. 66 59. 62 -2. 10E-01
2620. 00 1.03  153793. 66 60. 65 -2. 60E+00
0. 98 0.00 153794 64 &0. 65 -5. 03E-02
2012. 26 0.79  155806. 89 61. 45 -2. 28E+00
3. 59 0.00  155810. 48 b1. 45 -9. 63E-02
0. 00 0.00  155810. 48 &1. 45 2. 53E-03
0. 00 0.00  155810. 48 61. 45 -5. 91E-04
0. 01 0.00 155810. 48 61.45 -3. 72E-03
0.07 0.00 155810. 56 61. 45 1. 38E-02
15. 09 0.01  155825. 66 &1. 45 ~1. 98E-01
8s. 75 0.03 155911. 41 61. 49 4. 71E-01
41.10 0.02 155952. 50 61. 50 3. 26E-01
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Case III: Contour of Maximum Principal Stress
for Complete and CMS Models
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OTHER APPLICATIONS

The sample problems discussed in the previous section are very basic,
but illustrate the effectiveness and accuracy of Component Mode Synthesis. In
addition to the response spectrum analyses discussed, the methodology was also
applied to transient analysis. The theory is the same. Recovery of displace-
ments, forces, and stresses in the component substructure is done per timestep
rather than per mode. Implementation in MSC NASTRAN required a different set of
DMAP instructions consistent with the transient rigid formats. Preliminary
results for Case I were excellent, within 2 percent of the complete case for
component substructure principal stresses for all timesteps checked. Work in
this area is ongoing.

Additionally, the technique is very useful in problems where reanalysis
of large models would be prohibitive. One example is a system in the design
phase where model changes are being made with each new analysis, particularly if
one component of a system is changing frequently and the component mode repre-
sentation of the other components remains unchanged. Eigenvalue analysis need
only be performed for the changing component and the resulting system dynamic
model is very small compared to a complete physical model of the system. For
large problems, CMS can help analysts realize a significant savings in time and
cost.

Another example where an even greater economy can be realized is that
of a large nonlinear problem where only a portion of the system is nonlinear.
This would be the case for resiliently mounted shipboard propulsion or generator
equipment where the mounts exhibit nonlinear characteristics. The residual
structure would contain the nonlinear part of the system. In the transient
analysis where frequent stiffness matrix updates may be required, the matrix
sizes are small because of the Component Mode Synthesis. Recovery of data for
the component structures is still linear and based on the connection point
displacement time histories from the nonlinear analysis.

CONCLUSIONS

Dynamic substructuring by component mode synthesis is an effective and
accurate way to simulate the dynamic characteristics of large systems. If
enough modes are considered, there is relatively little loss in accuracy, unlike
simple dynamic reduction methods (i.e., static condensation, Guyan reduction).
Work is ongoing to determine a concept (analogous to the modal mass for fixed
base structures) to evaluate relative importance of modes for free/free struc-
tures. The reduction of model size afforded by CMS makes possible on moderate
sized mainframes (such as a VAX 11/780) analyses that otherwise might require a

supercomputer.
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